Automatically inject fakes in test fixture with FakeItEasy

Very poorPoorAverageGoodExcellent (2 votes) 
Loading...

Today I’d like to share a nice feature I discovered recently in FakeItEasy.

When you write unit tests for a class that takes dependencies, you typically need to create fake/mock dependencies and manually inject them into the SUT (System Under Test), or use a DI container to register the fake dependencies and construct the SUT. This is a bit tedious, and a few months ago I came up with an auto-mocking Unity extension to make it easier. Now I just realized that FakeItEasy offers an even better solution: just declare the dependencies and SUT as fields or properties in your test fixture, and call Fake.InitializeFixture on the fixture to initialize them. Here’s how it looks:

    public class BlogManagerTests
    {
        [Fake] public IBlogPostRepository BlogPostRepository { get; set; }
        [Fake] public ISocialNetworkNotifier SocialNetworkNotifier { get; set; }
        [Fake] public ITimeService TimeService { get; set; }

        [UnderTest] public BlogManager BlogManager { get; set; }

        public BlogManagerTests()
        {
            Fake.InitializeFixture(this);
        }

        [Fact]
        public void NewPost_should_add_blog_post_to_repository()
        {
            var post = A.Dummy<BlogPost>();

            BlogManager.NewPost(post);

            A.CallTo(() => BlogPostRepository.Add(post)).MustHaveHappened();
        }

        [Fact]
        public void PublishPost_should_update_post_in_repository_and_publish_link_to_social_networks()
        {
            var publishDate = DateTimeOffset.Now;
            A.CallTo(() => TimeService.Now).Returns(publishDate);

            var post = A.Dummy<BlogPost>();

            BlogManager.PublishPost(post);

            Assert.Equal(BlogPostStatus.Published, post.Status);
            Assert.Equal(publishDate, post.PublishDate);

            A.CallTo(() => BlogPostRepository.Update(post)).MustHaveHappened();
            A.CallTo(() => SocialNetworkNotifier.PublishLink(post)).MustHaveHappened();
        }
    }

The SUT is declared as a property marked with the [UnderTest] attribute. Each dependency that you need to manipulate is declared as a property marked with the [Fake] attribute. Fake.InitializeFixture then initializes the SUT, creating fake dependencies on the fly, and assigns those dependencies to the corresponding properties.

I really like how clean the tests look with this technique; the boilerplate code is reduced to a minimum, all you have to do is configure the dependencies where necessary and get on with your tests.

Two remarks about the code above:

  • You can use private fields instead of public properties for the fakes and SUT, but since the fields are never explicitly set in code, it raises a compiler warning (CS0649), so I prefer to use properties.
  • The tests in my example use xUnit, so I put the call to Fake.InitializeFixture in the fixture constructor, but if you use another test framework like NUnit or MSTests, you would typically put it in the setup method.

Also, note that there are limits to the scenarios supported by this approach:

  • only constructor injection is supported, not property injection (i.e. the dependencies must be constructor parameters of the SUT)
  • named dependencies are not supported; only the type is taken into account, so you can’t have multiple distinct dependencies with the same type
  • dependency collections are not supported (i.e. if your class receives a collection of dependencies, e.g. IFooService[])

Create an auto-mocking container with Unity and FakeItEasy

Very poorPoorAverageGoodExcellent (No Ratings Yet) 
Loading...

Unit testing can be tedious sometimes, especially when testing classes that have complex dependencies. Fortunately, some tools make it somewhat easier. I’ve been using FakeItEasy a lot recently; it’s a very easy to use mocking framework for .NET. It has a very lean and simple API based on generics and lambda expressions, and is a real pleasure to work with. It came as a breath of fresh air compared to the old RhinoMocks I had been using before.

But as nice as FakeItEasy is, the process of registering all the fake dependencies for the class you are testing is still a bit tedious. Wouldn’t it be nice if the IoC container could automatically create the fakes on demand ? So this code:

var container = new UnityContainer();

// Setup dependencies
var fooProvider = A.Fake<IFooProvider>();
container.RegisterInstance(fooProvider);
var barService = A.Fake<IBarService>();
container.RegisterInstance(barService);
var bazManager = A.Fake<IBazManager>();
container.RegisterInstance(bazManager);

var sut = container.Resolve<SystemUnderTest>();

Could be reduced to this:

var container = new UnityContainer();

// This will cause the container to provide fakes for all dependencies
container.AddNewExtension<AutoFakeExtension>();

var sut = container.Resolve<SystemUnderTest>();

Well, it’s actually pretty easy to do with Unity. Unity is usually not considered the “cool kid” in the small world of IoC containers, but it’s well supported, easy to use, and extensible. I came up with the following extension to enable the above scenario:

public class AutoFakeExtension : UnityContainerExtension
{
    protected override void Initialize()
    {
        Context.Strategies.AddNew<AutoFakeBuilderStrategy>(UnityBuildStage.PreCreation);
    }
    
    private class AutoFakeBuilderStrategy : BuilderStrategy
    {
        private static readonly MethodInfo _fakeGenericDefinition;
    
        static AutoFakeBuilderStrategy()
        {
            _fakeGenericDefinition = typeof(A).GetMethod("Fake", Type.EmptyTypes);
        }
        
        public override void PreBuildUp(IBuilderContext context)
        {
            if (context.Existing == null)
            {
                var type = context.BuildKey.Type;
                if (type.IsInterface || type.IsAbstract)
                {
                    var fakeMethod = _fakeGenericDefinition.MakeGenericMethod(type);
                    var fake = fakeMethod.Invoke(null, new object[0]);
                    context.PersistentPolicies.Set<ILifetimePolicy>(new ContainerControlledLifetimeManager(), context.BuildKey);
                    context.Existing = fake;
                    context.BuildComplete = true;
                }
            }
            base.PreBuildUp(context);
        }
    }
}

A few comments on this code:

  • The logic is a bit crude (it generates fakes only for interfaces and abstract classes), but can easily be adjusted if necessary.
  • The ugly reflection hack is due to the fact that FakeItEasy doesn’t have an non-generic overload of A.Fake that accepts a Type as a parameter. Well, nobody’s perfect…
  • The lifetime is set to “container controlled”, because if you need to configure method calls, you will need to access the same instance that is injected into the system under test:
var fooProvider = container.Resolve<IFooProvider>();
A.CallTo(() => fooProvider.GetFoo(42)).Returns(new Foo { Id = 42, Name = “test” });

Note that if you register a dependency explicitly, it will take precedence and no fake will be created. So you can use this extension and still be able to manually specify a dependency:

var container = new UnityContainer();
container.AddNewExtension<AutoFakeExtension>();
container.RegisterType<IFooProvider, TestFooProvider>();
var sut = container.Resolve<SystemUnderTest>();

Of course, this extension could easily be modified to use a different mocking framework. I guess the same principle could be applied to other IoC containers as well, as long as they have suitable extension points.

What about AutoFixture?

Before you ask: yes, I know about AutoFixture. It’s a pretty good library, and I actually tried to use it as well, with some success. The resulting code is very similar to the examples above. The main reason why I didn’t keep using it is that AutoFixture is not really an IoC container (though it does some of the things an IoC container does), and I prefer to use the same IoC mechanism in my unit tests and in the actual application. Also, I’m not very comfortable with the way it handles properties when creating an instance of the SUT. By default, it sets all public writable properties to dummy instances of their type; this is fine if those properties are used for dependency injection, but IMO it doesn’t make sense for other properties. I know I can suppress this behavior for specific properties, but I have to do it manually on a case by case basis; it doesn’t take IoC container specific attributes like [Dependency] into account. So eventually I found it easier to use my custom Unity extension.

Async unit tests with NUnit

Very poorPoorAverageGoodExcellent (2 votes) 
Loading...

Recently, my team and I started writing unit tests on an application that uses a lot of async code. We used NUnit (2.6) because we were already familiar with it, but we had never tried it on async code yet.

Let’s assume the system under test is this very interesting Calculator class:

    public class Calculator
    {
        public async Task<int> AddAsync(int x, int y)
        {
            // simulate long calculation
            await Task.Delay(100).ConfigureAwait(false);
            // the answer to life, the universe and everything.
            return 42;
        }
    }

(Hint: this code has a bug… 42 isn’t always the answer. This came to me as a shock!)

And here’s a unit test for the AddAsync method:

        [Test]
        public async void AddAsync_Returns_The_Sum_Of_X_And_Y()
        {
            var calculator = new Calculator();
            int result = await calculator.AddAsync(1, 1);
            Assert.AreEqual(2, result);
        }

async void vs. async Task

Even before trying to run this test, I thought to myself: This isn’t gonna work! an async void method will return immediately on the first await, so NUnit will think the test is complete before the assertion is executed, and the test will always pass even if the assertion fails. So I changed the method signature to async Task instead, thinking myself very clever for having avoided this trap…

        [Test]
        public async Task AddAsync_Returns_The_Sum_Of_X_And_Y()

As expected, the test failed, confirming that NUnit knew how to handle async tests. I fixed the Calculator class, and stopped thinking about it. Until one day, I noticed that my colleague was writing test methods with async void. So I started to explain to him why it couldn’t work, and tried to demonstrate it by introducing an assertion that would fail… and to my surprise, the test failed, proving that I was wrong. Mind blown!

Having an inquisitive mind, I immediately started to investigate… My first idea was to check the current SynchronizationContext, and indeed I saw that NUnit had changed it to an instance of NUnit.Framework.AsyncSynchronizationContext. This class maintains a queue of all the continuations that are posted to it. After the async void test method has returned (i.e., the first time a not-yet-completed task is awaited), NUnit calls the WaitForPendingOperationsToComplete method, which executes all the continuations in the queue, until the queue is empty. Only then is the test considered complete.

So, the moral of the story is: you can write async void unit tests in NUnit 2.6. It also works for delegates passed to Assert.Throws, which can have an async modified. Now, just because you can doesn’t mean you should. Not all test frameworks seem to have the same support for this. The next version of NUnit (3.0, still in alpha) will not support async void tests.

So, unless you plan on staying with NUnit 2.6.4 forever, it’s probably better to always use async Task in your unit tests.

Posted in Unit testing. Tags: , , , . 2 Comments »
css.php